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J. Phys.: Condens. Matter 4 (1992) 2831-2844. Printed in the UK 

Self-consistent Green-function method for the calculation of 
electronic properties of localized defects at surfaces and in 
the bulk 

G Wachutkat, A Fleszart, F Micas and M Scheffler 
Fritz-Haber-Institut der MPG, Faradayweg 4-6, D-1000 Berlin 33, Federal Republic 
of Germany 

Received 10 October 1991 

Abst rac t .  We present a self-consislent Green-function method which enables 
parameter-free calculations of the charge density, the density of states, and related 
quantities in electronic systems where the three- 01. two-dimensional translational 
symmetry is broken by a perturbation which is localized in real space. In partic- 
ular, the method is suited to study point defects in the interior of a metallic or 
semiconducting crystal or at a crystal surface. The self-comistent Green operator 
describes an infinitely extended system. The only restrictive assumption is that the 
self-consirtent electronic structure of the unpcrtrrbedbulk material is wel l  reproduced 
by a muffin-tin (pseudo) potential. In the perturbed region. however, no significant 
constraint is imposed either on the shape af the potential or on the charge density. 
While the basic ideas of our method have been published elsewhere [l], in this paper 
the practical aspects will be discussed. The numerical practicality and efficiency of 
a first implementation based on a Gaussian basis set is illustrated with reference to 
selected test calculations. 

1. Introduction 

In this article, we describe the practical aspects of a new method [l] based on the 
concepts of density-functional theory (DFT) [2,3]. The method applies to a large class 
of electronic systems where the two- or three-dimensional periodicity is broken by a 
spatially localized perturbation. Typical examples include point defects (e.g. vacancies 
or impurities) in the bulk or at  the surface of a crystal, or adsorbates (a t  low coverage) 
on a surface. 

Our approach contrasts favourably with other so-called ‘wavefunction methods’ in 
several aspects. In the latter methods, one attacks the entire system directly in one 
single step by solving the system of Kohn-Sham equations in a self-consistent way. 
I t  is well known, however, that the solution of a Schrodinger-type equation implies a 
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boundary-value problem. As a consequence, the individual wavefunctions, the energy 
levels, and the density of states will not only depend on the spatial region of physical 
or chemical interest, but they may also be sensitive to the distant boundaries. The 
changes of the individual wavefunctions will usually reach far into the unperturbed 
material and, therefore, the Kohn-Sham equation needs to be solved within a range 
which extends largely outside the defect region. So even if supercomputing facilities 
are available, the computational effort can only be kept tractable by introducing strong 
simplifications of the original, infinitely extended geometry such as, e.g., cluster [4,5] 
or slab or supercell [6-101 approximations. 

An alternative way is provided by our Green-function method which takes advan- 
tage of the physical effect that  changes in the Kohn-Sham effective potential VeR(r) 
and in the electron density n(r) are much more localized than the individual wave- 
functions. In this approach, we follow a fwo-step concepl and split the entire problem 
into two parts where each of them is far less complicated than the original one. This 
allows us t o  combine a proper physical description with computational practicality. 
The entire complex structure is decomposed into an infinitely extended, but tractable 
'reference system' characterized by an effective single-particle potential Vo(r )  and a 
'difference system' defined as the difference between the true (self-consistent) effective 
potential VeR[n(r); T ]  and V o ( r )  (cf figure 1) 

AV[n(r);  r] := &&(~);r] - V'(T) .  (1) 

Figure 1. Schematic picture of the effective singbparticle potential of the true 
system, i.e. an adatom chemisorbed at a surface (a) and of the reference system ( b ) ,  
i.e. s clean, semi-infinite substrate with a mde1 surface potential. The substrate 
atomsareatpositionsrld=-I,-Z, ... . 

For reasons which will become apparent below, the key idea in our approach is that 
the change of the potential, At', as well as the change of the electronic charge density, 

An(r) = n ( r )  -no(.) ('4 
are supposed to be localized within a finite box A in real space, as soon as self- 
consistency is attained. no(.) is the ground-state electron density of 

The complete set of electronic states of the reference system is represented by the 
'reference Green operator' 

Go(Z) := [Z - HE]-' (4) 
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and can be computed numerically at  reasonable expense. Z = E + iq is the complex 
single-particle energy ( q  2 0). The calculation of Go(Z) along a properly chosen con- 
tour in the complex energy plane defines step one of our approach; practical methods 
for that are described elsewhere 111-141 and, hence, will not be discussed in this work. 

In step two, the Green operator G(Z) of the true system (and the charge density 
related to it) is determined by solving Dyson's equation 

G(Z) = Go(Z) + Go(Z)AVG(Z) (5) 

in a self-consistent way. In contrast to the so-called 'matrix Green function' methods 
[15-181 which, after introducing a set of appropriate basis functions, make use of 
equations (3)-(5) in matrix representation, we treat the relations (3)-(5) as operator 
equations. Writing the operator G(Z) as 

G(Z) = Go(Z) + AG(Z) (6) 

reveals that  only the difference operator AG(2) (and the difference electron charge 
density An(r) related to it) actually needs to be calculated in step two. The advantage 
of this scheme is that,  by construction, G(2)  satisfies the correct boundary conditions 
of the infinite system (through Go(Z)) and allows for full flexibility in the perturbed 
region (by virtue of AG(Z)). 

In section 2 of this paper it is shown that it is only the projection of AG(Z) onto the 
box A which has to be evaluated numerically and, therefore, only this quantity needs to 
be well approximated by a finite number of basis functions. In section 3 we summarize 
some important practical and technical aspects of our method. In section 4 some test 
calculations are discussed. These tests have been performed using examples which are 
rather difficult for the method, because we like to shov, the advantages as well as the 
limitations of our approach. In section 5 we summarize our results. Throughout this 
paper operators are noted by bold italic face symbols and the corresponding matrices 
are typeset in gothic. 

2. Basic theory 

Since the basic features of our method have been discussed elsewhere [l], we focus 
here on those aspects of the theory which are relevant for the computational practice. 

The self-consistency loop is schematically illustrated in the flow diagram in figure 2. 
We start with a guessed difference electron distribution An and thus obtain an 

initial value of the electron density n(v) = n o ( v )  t An(T). From this, the Hartree 
contribution 

where e is khe elementary charge, and the exchange-correlation contribution 

AV.,[A~;T] = V,,[no(v) + An(.);.] - V,,[no(~);v] (8) 

are computed to update AV according to the relation 

AV = AYon + AV,[An] + AV,,[An] + AK: (9) 
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Figure 2. Flow diagram of the self-consistency loop. 

Here AYon denotes the (possibly non-local) unscreened ionic defect potential; in prac- 
tice, norm-conserving ab initio pseudo potentials [19,20] are favourably used. We also 
add in equation (9) a term A.E: which takes into account the fact that the reference 
system, defined by V", need not necessarily be a self-consistent potential. If I/" and 
no are self-consistent, A\<: is zero. If, however, If0 is not fully self-consistent (e.g. 
because a model surface potential or a muffin-tin approximation is used), we obtain 

AV: = v:"+ VH[no]+ Vxc[no] - V o .  (10) 
b& are the ionic (pseudo) potentials underlying the reference-system potential Vo. 
Including At;: in (9) implies that the approximations done at  the first levcl of the 
calculation will be corrected at  the second level (see below). Obviously, V" should 
be chosen such that AK: is localized. This implies that any choice of V o  should be 
close to a self-consistent potential. This appears to be a significant constraint on Vo. 
However, we note that the remaining freedom allows us to improve the eficiency and 
numerical accuracy to evaluate G"(Z) significantly. Let us now exploit the localization 
of AV and of An. Since the change of the electron density is confined to the rather 
small spatial region A ,  it can he calculated by 

(T I P A G ( Z ) P  I r ) d Z .  (11) 
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Here P denotes the projection onto the region A in real space, and C is a contour in the 
upper half of the complex energy plane joining -cm with E F ,  the Fermi energy of the 
unperturbed (reference) system. Therefore, it suffices to solve Dyson’s equation (5) 
together with (6) only for the quantity PAG(Z)P by making use OF 

PAG(Z)P = PGO(Z)PAVP(PGn(Z)P  + P A G ( Z ) P ) .  

P A V P  = AV (13) 

(12) 

This equation immediately follows from (5) if only the relation 

is valid (note that P P  = P ) .  As in typical applications the perturbation potential 
AYon is efficiently screened at larger distances from the centre of the perturbation, 
because it is cancelled by AV,, (13) can indeed be satisfied at  a high level of numerical 
accuracy. We note that perturbations in bulk semiconductors (see e.g. [21]) are typi- 
cally screened within a distance of about 1-2 bond lengths. This even holds within an 
acceptable approximation for charged defects. At metal surfaces the screening may be 
less efficient: for ionically bound adsorbates the perturbation potential falls off by a 
power law, thus much slower than an exponential Based on our experience we tend to 
conclude that this power-law tail of the potential (often called Friedel oscillations) has 
a rather small prefactor for typical metals (e.g. AI or Pd). Therefore, neglecting this 
long-range tail of the potential-perturbation will not affect the results perceptibly. For 
high r,-value jeilium-like metals, i.e. for rp 2 4, these Friedel oscillations are expected 
to be more important. In this case a better basis set covering a larger region in real 
space may be needed. 

After solving (12), the ‘new’ difference charge distribution obtained from (11) is 
compared with the initial (‘old’) one. If the difference is found to be smaller than 
the desired tolerance, An is accepted as the self-consistent result and, together with 
AG(Z) and AV, passed to the post-processor level of the calculation. Otherwise the 
self-consistency cycle is repeated with An replaced by Adne”).  

The post-processor serves to evaluate certain functions or functionals OF AG(Z) or 
AV. As a matter of fact, AG(Z) (or G(Z) )  are central quantities which completely 
characterize the electronic properties of the system under consideration. Hence any 
physical observable of interest can be extracted from it, such as, e.g., the change of 
the electron density (see equation ( l l ) ) ,  the change of the total density of states, 

2 d  . A N ( E )  = hm Imlndet (1 - Go(E + i7)AV) 
R d E  rl-to 

the local density of states, 

2 .  
N ( E , r ) = - -  11 m Im(T I G(E +ill) I T )  

7r ’ ) - to  

the density matrix, 

n ( r ,  T ‘ )  = -;Im (T 1 G(Z) I d ) d Z  2 
or dipole moments, change of the work function etc. In particular, G(Z) contains all 
of the information required for total energy and force calculations [2,3,16,18,22,23]. 



2836 G WQchulka et (11 

3. Practical realization 

In this section we describe some technical details of the self-consistency scheme. The 
projector P onto the box A is approximated as follows: we choose a set of localized, 
linearly independent functions 

(r I S I )  =gJ(r)  I = 1, ,  . . , N  (17) 

which 'cover' A in the sense that the projector 

(with S,, := (gJg,) being the overlap matrix) is an acceptable approximation of P .  
Here 'acceptable' means that 

holds with sufficient accuracy in region A .  The matrix elements AG,, are defined by 

~ c d z )  := ) J S - ' h K h  I AG(Z) I ~ L c ) ( s - ~ ) L J .  (20) 
X , L  

We should mention that in our previous paper [I) we omitted the factors S-' for the 
sake of a simple notation. This is equivalent to assuming an orthonormal basis set. In 
the present implementation of our method, the g, are Gaussian orbitals 

golmR(r) := e-olr-R121T - RI'&,(r - R) (21) 

placed at appropriately chosen positions R E A and falling off with decay constants 
(I > 0. Y,, denote the spherical harmonics; hence, lr - nl'Y,,(~ - R )  are harmonic 
polynomials centred at R. The reason for choosing Gaussians as the basis set is 
primarily that they exhibit convenient integration and expansion properties, so that 
in the evaluation of matrix elements a considerable part of computational work can be 
done analytically. After the Gaussian basis has been introduced, the present method is 
essentially identical t o  the defect-Green-function method of Scheffler e t  a /  [21,24,22]. 
The only differences are that, in the present version, instead of orthonormalizing the 
Gaussian basis we carry the S matrix along, and that we avoid exploiting group 
theory. Our approach shows some formal similarities with the defect-Green-function 
methods of Bernholc e t  d [25], Baraff and Schliiter [26], and Braspenning e t  d ([27] 
and references therein). In the practical realization, however, there are substantial 
differences which give the present method all the flexibility required for handling low- 
symmetry +fects and in particular, defects at  surfaces and interfaces. 

With P substituted for P in equation (12), we arrive at  a discretized version (= 
Gauss orbital representation) of Dyson's equation which can be solved algebraically 
for the unknown quantity AG(Z) 

AG(2) = [(l - So(Z)S-'AVS-')-' - l]GO(Z).  (22) 
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Here, all matrices are understood with respect to the Gaussian orbitals, which implies 
the occurrence of the inverse overlap matrix, $-I, due to the non-orthogonality of 
the basis functions golmR. For the practical evaluation of (gllGo(Z)lgJ), first the 
kll-resolved angular momentum representation of Go(Z), as it is obtained from the 
layer KKR-method [12], 

(R, + T  I Go(Z,kll) 1 Rj +r') = G ~ l m j , , ~ , ( r , r ' ) ~ m ( ~ ) ~ ~ m , ( ~ ' )  (23) 
Iml"' 

is semi-analytically transformed into an expansion in terms of the orbitals golmR. 
The details of the somewhat involved algebra are described in 1141. Then a numerical 
integration over the two-dimensional Brillouin zone, Bz,, is performed by means of an 
efficient and accurate Gaussian-type quadrature formula (281 yielding 

where P is the area of the two-dimensional unit cell. We note that along the path 
segments C, and C, (see figure 3) the k integration converges quite rapidly. Special 
care is necessary, of course, at the Fermi surface, i.e. for Z 3 EF. 

Typical linear dimensions of the matrices found in the discretized equations are 
N = 50-350 (= number of Gaussians); for instance, a 9-centre, 3-decay, s,p,d-basis 
results in N = 9 x 3 x 9 = 243. The computational expense required for evaluating (22) 
numerically comprises four full matrix multiplications and one full matrix inversion 
per energy value. Since the numerical integration of (11) typically involves about 50- 
100 sample points, the use of vectorization or parallelizatiou techniques is obviously 
advantageous. One should note that the time-consuming calculation of G " ( 2 )  has to be 
done only once (in step one of our scheme) on a preselected sequence of energy sample 
points Z, E C which are determined by the quadrature rule used in the subsequently 
discussed complex energy integration. 

I1 

":I 
0 

E, O=E, 4 Re Z 
Figure 3. Energy contou used for complex charge density integration. D denotej 
the imaginary part which is typically chosen as 2 eV. E1 will be sufficiently far below 
the bottom of the band. 

The change of the charge density An(?) is most efficiently obtained by evaluating 
equation (11) by means of the numerical integration 

where 

AC := -- AG(Z)dZ :k 
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Because the Green-function operator Go(Z) is evaluated very accurately for its real 
and its imaginary part (see [12] and [14]) our method allows for the treatment ofnearly- 
free electron metals as well as for transition metals. In practice, the integration path 
C reaching from -CO t o  EF is realized as a rectangular contour, C = C, + C, + C, in 
the upper half of the complex energy plane as shown in figure 3. This is advantageous 
because typically the integrand in equation (11) shows rapid variations along the real 
energy axis which are the more broadened and smoothened, the more the imaginary 
part of the energy grows. Consequently, as the distance D between the contour and 
the real axis increases, the sample points used in the quadrature rule can be chosen 
less dense on path C,. The total number of sample points required for a certain 
numerical accuracy will attain a minimum for a certain distance D. In view of the 
computational expense for solving (22), it is obvious that minimizing the number of 
sample points is worthwhile. Empirical values for the optimal choice of D are about 
1-2 eV, in accordance with other investigations (17,18,22,29]. 

Having An(.) obtained through AC, we need to recalculate the charge-dependent 
contributions to A V .  For this purpose, a three-dimensional equidistant discretization 
grid { v ~ } ~ = ~ , , , , , + ,  is defined within the box A (a typical number of points is NP N lo4), 
and A n  IS evaluated on the grid points vj. The point values AVxc(rj) are now easily 
obtained by equation (S), while the Hartree contribution A V H ( ~ j )  is computed by 
solving Poisson’s equation 

by means of Fast Fourier Transform (FFT) techniques [24,30]. Then the matrix el- 
ements of the electron density-dependent contributions to A V  with respect to the 
Gaussian orbitals are calculated by equidistant numerical integration over A 

NP 

j = 1  

where Au denotes the volume of the box A divided by NP. Since a11 these operations 
tend to become expensive in terms of CPU time and memory, a careful choice of the 
grid spacing is most usefuI. The requirements are to ensure sufficient spatial resolution 
of An(.) for the FFT step as well as to keep the integration error of equation (28) 
within tolerable bounds. One should note that the matrix elements of the non-local 
part of A V ,  i.e. of AYon (cf (9)),  have to be computed only once when initializing the 
entries for the self-consistency loop. 

To avoid oscillations or possible divergence of the self-consistency cycles, it is 
necessary to damp the iteration procedure. From a mathematical point of view, we 
deal with a fixed-point problem where the underlying iteration mapping has to be 
controlled by a relaxation parameter y in such a way that Banach’sfixed-point theorem 
applies [31]. In our present approach we achieve this by ‘potential mixing’: only a 
fractional part of the updated potential (as obtained from the evaluation of 
(9)) is actually used for the computation of &7(Z) in the subsequent cycle: 

A V  = yAF(”e\v) + ( 1  --y) , (29) 

For y = 0, no improvement of A V  is made, but the iteration is absolutely stable. 
Choosing a small y > 0 results in a slight improvement of A V ,  with the iteration being 
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still stable; however, the rate of convergence will be slow. So it is desirable to increase 
the mixing weight y in a self-adaptive way in order to accelerate the convergence, 
but without overstepping the point where the iteration process starts oscillating or 
diverging. Hence, the optimal choice of the relaxation parameter 7 consists in finding 
a condition under which the rate of convergence attains its maximum value. This idea 
can be expressed quantitatively as follows: we define the ‘residual’ of the j t h  iteration 
step as 

pj (y) := llAq(new) - AV!otd) J 11 (30) 

where A$o1d) has been used as input for step j (with mixing weighty), while 
is the updated but undamped difference potential afferstep j.11.. .]I may be any norm, 
but in the present context it is convenient to use the L2-operator norm which is easily 
obtained by 

The rate of convergence is then given by 

Unfortunately, the exact value of w(y) can be determined only a posterion. However, 
from the general properties of relaxation methods 1321, the qualitative behaviour of 
the curve w ( y )  is known (figure 4 )  and, therefore, can be exploited: at y = 0, we have 
the trivial case w(y) = 0. Then, w(y) will monotonously grow until the maximum 
value is reached at y = yopt. Subsequently, w(7) falls off very quickly and changes 
sign, indicating that the iteration becomes divergent here. Thus, for obtaining an 
estimate of yOpt, we monitor the convergence history for some distinct trial values 
yt < y2 < y 3 . .  . and fit a parabola to the recorded values of w(yk); the maximurn of 
the parabola yields an approximate value of yopt, which will be used for the subsequent 
iteration step. Repeating this procedure at  any step, the approximate value of yopt is 
continuously updated and so an optimal control algorithm for the mixing weight y is 
obtained. Test calculations (figure 5) have shown that by this method a considerable 
convergence acceleration can be achieved, and that the automatic control is stable 
enough to recover even in the case of overstepping the optimum yopt (figure 5 ( b ) ) .  

Figure 4. Convergence rate of the seU-consislency iteration y e p  

sus the damping parameter 7 (schematic). 
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number of iteralions 

Figure 5.  Convergence history of the self-mnsistency loop. The full NTW are the 
result of the described optimization procedure (see equations (29)-(32)). The broken 
curves follow, when the dampingparameter y is kept at a fixed value. Left: hy&ogen 
atom in empty lattice; right: vacancy in bulk aluminium. 

4. Test calculations 

Several tests of the practicality and numerical accuracy of our self-consistent Green- 
function method have been performed. For example, we calculated the spectrum and 
the wavefunctions of a hydrogen atom embedded in an empty lattice and equipped with 
a partially filled Is shell. As another test, we studied a vacancy in bulk aluminium. 
These test examples were chosen because in these cases results from independent and 
alternative methods were available for comparison. 

To estimate the absolute accuracy of the contour integration, we integrated the 
change of the electron density over the enclosing box A and compared this value, Q,,,, 
with the integrated change of the total density of states, 

where 

& ( E )  := - 0 - t o  lim Imlndet  (1 -B"(E+iq)S-'AVS-') (34) 

is the generalized scattering phase shift [33]. Without basis-set effects and quadra- 
ture error, Qint and Qdas have to be equal. Moreover, if perfect charge screening is 
attained, they exactly compensate the change of ionic charge, Qion, which is given by 
the unscreened perturbation potential, AY,,". In our tests the deviations of Qint  and 
Qdos from -Qion proved to he within tolerable bounds (< 2%). 

Figure 6 shows a family of curves representing the ground-state energy level of 
the hydrogen atom with partially occupied 1s state. The full curve shows the correct 
relation as obtained by integration of the radial atomic Kohn-Sham equation. The 
other curves show resuks of Green-function calculations using an empty FCC lattice 
and a lattice constant of aluminium. The discrepancies are not astonishing because 
an empty-lattice test is a tough challenge to a method where the Green function is 
calculated from scattering theory and numerical ]i,,-integration so that we are cer- 
tainly close or beyond the limits of its capability. I t  should also be noted that we 
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have an  extremely strong perturbation in this case, because no((.) = 0 and hence 
An(.) = n(~) .  Figure 7 reveals the additional complication of approximating the hy- 
drogen e2/r potential by a tensor product of Gaussians. Nevertheless, figure 6 clearly 
demonstrates that, with an appropriate choice of the basis set, the true energy level 
can be approached either from above or below. It  should be mentioned here that our 
Green-function method does not obey a variational principle for the singleparticle 
energies; hence a minimum property for energy levels cannot be expected. For total 
energies, the variational principle of Etot”’[n] can, however, be applied. The proper 
selection of the decays n and the orbital sites R in the Q ~ S Q ~ Z  (21) thus turns out to be 
the difficult point in our method. A rigorous approach to measure the quality of the 
basis would necessitate the use of a physically meaningful variational expression [34] 
such as, for example, the total energy. Our present problem is illustrated in figure 8 
which shows the squared 1s wavefunction as obtained with a proper and with a poor 
basis set. The differences between the exact result and the Green-function calculation 
look very large. It should be noted, however, that the small r region does not play an 
important role, because of the small volume element r’dr. 

-2 - > 2 -4 

5 -8 

+ -10 

& -12 
o. 

> 
C? -6 
bi 
L 

._ - 
-14 

P c -16 

U1 
-18 

- 
.- 

0 .5 1 .o 1 .c 
occupation number 

Figure 8. DFT-LDA [29] calcdatione for the singlepartide energy of B hydrogen 
atom as a function of the Is level occupation. The full curve shows the correct result. 
The other w v e s  show results of Green-function calculations: monocentre $-basis with 
decays 0.1, 0.9, 1.6 (chain curve), monocentre s-basis with decays 0.3, 0.6, 
1.2 bob-* (dotted curve), 13-centm s,p,d-basis with decays 0.1, 0.5, 1.0 bok-* 
(broken curve). 

As another test example, where screening is crucial, we treated the vacancy in 
bulk aluminium. Here the defect charge (the removed A I  nucleus) is screened by the 
crystal electrons surrounding the vacancy. We compared the self-consistent potential 
and charge distribution resulting from our Green-function method with self-consistent 
supercell calculations based on the same ionic bulk potential 1191. In figure 9 we 
show results of a self-consistent AI bulk calculation, as well as of calculations for an 
aluminium vacancy. For all calculations norm-conserving pseudopotentials are used. 
Figure 9(a) shows the bulk electron density and figures 9(c) and 9(d) show charge 
density diflerences of vacancy supercell calculations. The basis set for these three 
calculations consists of plane waves with a kinetic energy up to 12 Ryd. For the crystal 
we use a one-atom cell and evaluate the 15 integrals with 146 special points. Figure 9(c) 
corresponds to an 8-atom supercell and using 19 special k points, and figure 9(d) 



2842 G Wachutka et 01 

Figure 7 .  Exact - e z / v  potential (full curve) 
andi ts  approximation by a 13-centre s , ~ ,  d-basis 
with decays 0.1, 0.5, 1.0 bohr-' along the [loo] 
direction (dotted curve), and along the [llO] di- 
rection (broken curve). 

Figure S. Squared 1s wavefunction of a hydro- 
gen atom, V*E(T) = -2 /.: exact result (fun 
curve); monocentre h a i r  with decays 0.1, 0.9, 
1.6 bohF2  (chain curve); monocentre basis with 
decays 0.3, 0.6, 1.2 bohC2  (dotted curve). 

",purr J .  ,a, Jell-conS1Srenc cnarge aensrry o r  an a, C'YSC" along c n e  ,'""J-p'ane. 
( b )  Screening charge density around a vacancy in hulk aluminium as obtained with 
our Green-function method (13-centre s,p,d-baFis, decays = 0.3, 0.5, 1.0 bohr-2). 
(e) Same as ( b )  but calculated with a supercell approach with 8 a t o m  per cell. 
(d) Same as ( c )  but with 27 a t o m  per cell. Units are l O - 3  e bohrF3. Atoms are 
indicated by full circles. 

corresponds to a 27-atom super cell with 6 special k points. Figure 9(b)  shows the 
result of a Green-function calculation using a 13-centre basis. In the two supercell 
calculations (figures 9(c) and 9(d)) the electron density is practically identical, which 
reflects the earlier stated point that  screening of perturbations in metals is very efficient 
and that long-range Friedel oscillations are not important for small-r, metals. The 
Green-function method gives slightly different results. These differences arise because 
the Green-function method uses a different basis set (Gaussians centred at 13 sites 

~ ~~~~~ 
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amounting to 351 basis functions). For a nearly-free-electron metal this is apparently 
not as flexible as the plane-wave basis (for the 8-atom cell there are 12 x 48 x 610 = 
351 360 basis functions). The differences between figure 9(b) and figures 9(c), (d) are, 
however, not important, i.e. the spatial extension and shape of An(.) obtained by  the 
Green-function calculation and by the super cell calculation are in essence identical. 
The difference in the 24 x e b ~ h r - ~  line, i.e. the fact that  we obtain two closed 
rings of 24 x e b ~ h r - ~  in the Green-function approach but four triangleshaped 
local maxima in the two supercell calculations, is not significant. 

5. Summary 

In this article we discussed some practical aspects of a new self-consistent Green- 
function method which allows first-principles calculaticns of the electronic properties 
of infinite or semi-infinite systems where a localized perturbation destroys the two- 
or three-dimensional periodicity. Provided the electronic structure of the unperturbed 
material is well represented by a muffin-tin (pseudo) potential, there is no significant 
constraint on the shape of the potential or the electron density in the vicinity of the 
perturbation. The asymptotic behaviour far away from the perturbation correctly 
reflects the system to be investigated. 

The individual steps of the self-consistency loop are explained. In particular, 
computationally efficient discretization schemes for Dyson’s equation and Poisson’s 
equation are described and the problem of optimal energy integration is treated. Fur- 
thermore, an algorithm for convergence acceleration is presented which is based on 
the optimal control of potential mixing. 

Test calculations have been made to examine the numerical accuracy of our 
method. They demonstrate its computational practicality and efficiency, but also 
reveal the implications caused by the definition of the basis set used in the present 
implement ation. 
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